Hybrid Steepest-Descent Methods for Solving Variational Inequalities Governed by Boundedly Lipschitzian and Strongly Monotone Operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Steepest-Descent Methods for Solving Variational Inequalities Governed by Boundedly Lipschitzian and Strongly Monotone Operators

Let H be a real Hilbert space and let F : H → H be a boundedly Lipschitzian and strongly monotone operator. We design three hybrid steepest descent algorithms for solving variational inequality VI C, F of finding a point x∗ ∈ C such that 〈Fx∗, x − x∗〉 ≥ 0, for all x ∈ C, where C is the set of fixed points of a strict pseudocontraction, or the set of common fixed points of finite strict pseudoco...

متن کامل

Iterative Algorithms for Variational Inequalities Governed by Boundedly Lipschitzian and Strongly Monotone Operators

Consider the variational inequality V I(C, F ) of finding a point x∗ ∈ C satisfying the property 〈Fx∗, x − x∗〉 ≥ 0 for all x ∈ C, where C is a nonempty closed convex subset of a real Hilbert space H and F : C → H is a nonlinear mapping. If F is boundedly Lipschitzian and strongly monotone, then we prove that V I(C, F ) has a unique solution and iterative algorithms can be devised to approximate...

متن کامل

Mann-type Steepest-descent and Modified Hybrid Steepest-descent Methods for Variational Inequalities in Banach Spaces

1Department of Mathematics, Shanghai Normal University, Shanghai; and Scientific Computing Key Laboratory of Shanghai Universities, Shanghai, China 2Department of Mathematics & Statistics, College of Science, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; and Department of Mathematics, Aligarh Muslim University, Aligarh, India 3Department of Applied Mathematics, National S...

متن کامل

Solving strongly monotone variational and quasi-variational inequalities

In this paper we develop a new and efficient method for variational inequality with Lipschitz continuous strongly monotone operator. Our analysis is based on a new strongly convex merit function. We apply a variant of the developed scheme for solving quasivariational inequality. As a result, we significantly improve the standard sufficient condition for existence and uniqueness of their solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2010

ISSN: 1687-1812

DOI: 10.1155/2010/673932